

目次	
1. 背景	
2. 原子カプラントの系統構成	
3. 水質設計と異常診断	
4. まとめ	

1. 背景	
1. 背景	
1.1 プラントの水質設計の目的	
1.2 水質最適化が不十分な場合の弊害	
2. 原子カプラントの系統構成	
3.水質設計と異常診断	
4. まとめ	
© MITSUBISHI HEAVY NDUSTRES, LTD.	3

1.1 プラントの水質設計の目的	
▶ 高温pHの制御により配管・機器の全面腐食とFAC(流れ加速腐食)の最小	∖化
→プラントの長期健全性確保	
→保全コスト低減(管理・保修)	
▶ SG(蒸気発生器)への腐食生成物(酸化鉄など)持込の最小化	
→SGの長期健全性(腐食リスク低減、付着物による損傷、SGの長寿命化)
→SGの伝熱性能の低下抑制・保全コスト低減(管理・保修)	
→SG内の自然循環の流動性維持(出力の安定性維持)	
© MTSUBISHI HEAVY INDUSTRIES, LTD.	4

2.4 pH管理と水質設計の現状:(1)最適pH ALLS
▶ 現状実績
→給水pH@25℃ = 9.2~10.1程度。炭素鋼腐食の最小化は約11~12程度で,ギャップあり。
▶ pH上昇の制限
→排水・排気の規制,作業環境制限(薬液,系統サンプリング水および揮発ガスとの接触・吸引)
→薬液費用・排水処理費用,pH調整剤を吸着するイオン交換樹脂の購入・再生・廃棄費用
→有機アミンを使用する場合、生成する有機酸生成によるタービン材料への影響
→系統に銅系材料がある場合,銅系材料の腐食抑制のための室温pHの上限は9.2程度
▶ 事象の複雑さ
→複雑な気液分配から系統で化学種濃度が異なり,温度も異なる上,系統を固定しても最適pHは一
元的な最適値がなく,地域・プラントの事情によって様々である。
▶ 設計ツール
全体のバランスを見るために、系統全体の化学種濃度、pH分布を計算する設計ツールは有効
O MTSUBISHI HEAVY NDUSTRES, LTD. 10

2.4 pH管理と水質設計の現状:(2) 代表的な水質設計ツール	
代表的なプラントの水質設計ツール	
➢ EPRI (Electric Power Research Institute, 米国)	
ChemWorks(プラントの水質設計ツール),MULTEQ Version 9.0(化学平衡ツール)	
(ML18233A520, "NRC / SGMP Steam Generator Task Force Meeting", August 21, 2018)	
➢ EDF (Electricite de France, 仏国)	
CIRCE, CHEMBAL (Olga Also Ramos et. al. " Outcomes and Analyses of the Secondary Circuit Water Chemistry Strategy for the French PWR Fleet", NPC 2014 SAPPORO, Japan, 2	2014)
➤ Framatome (仏国)	
FRASEC	
(Marie-Hélène Clinard et. al., "PWR Secondary Water Conditioning Modelling: FRASEC", NPC 2018, 21st International Conference on Water Chemistry in Nuclear Reactor Syster MHI(三菱重工(株), 日本)	ms, USA, 2018)
pH_Chem_Cal (2008年, 従来のFortranコードからのリプレース版)	
© MTSUBISHI HEAVY NDUSTRES, LTD.	11

3. 水質設計と異常診断	
1. 背景	
2. 原子カプラント系統構成	
3. 水質設計と異常診断	
3.1 系統構成	
3.2 解離平衡と気液平衡	
3.3 シミュレータ	
3.4 異常診断の例	
4. まとめ	
© MTSUBISHI HEAVY NDUSTRIES, LTD.	12

4. まとめ <u>★ MATSUBISHI</u>
✓ 発電プラントの長期健全性確保,保全コスト低減,伝熱性能維持などのためには高温pH制 御が必要であり,その設計のためにプラントのシミュレータを開発している。
✓ 発電プラントの水・蒸気系統では、多成分系でのイオン解離・気液分配・成分の分解・脱 塩塔での吸着浄化などがあり、事象が複雑になる。水・蒸気の物性データ・近似式は、その中でのイオン解離・気液平衡の計算に使用されている。
✓ 三菱重工業(株)では、プラントシミュレータのプラットフォームとして、Microsoft Excel を使用し、シミュレータ開発期間の短縮と、柔軟な設計および異常診断システムとして活 用している。
© MTSUBISHI HEAVY NDUSTRES, LTD. 20

