

水と高分子材料の分子動力学計算による研究 - 膨潤と脆化の分子機構 -

Dr. Z. Tang at IMS

Dr. Z. Zhan

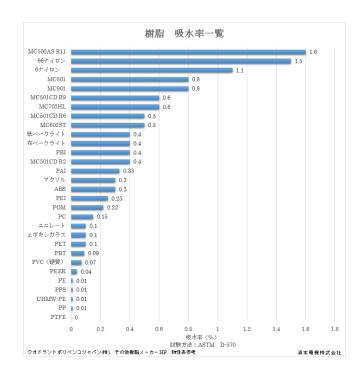
岡崎 横浜市大

実験 山形大 伊藤浩志 小林 豊

Z. Zhan, Z. Tang, Y. Kobayashi, H. Itoh, S. Okazaki, Polymer **332**, 128582 (2025)

ポリマーの力学特性に及ぼす水の影響

ポリエステル、ポリアミド、・・・・


・環境と平衡にある膨潤状態での使用が前提 漁具、繊維、構造材料、・・・・

 $0.5 \sim 2 \text{ wt}\%$

カ学特性は、長期的に劣化、脆化 水の存在により加速

Possible Origins of Embrittlement

- 1. Crystallization
- 2. Hydrolysis
- 3. Disentanglement
- 4. Hydrogen bonds
- 5. Physical aging = densification

https://www.yumoto.jp/material-onepoint/plastic-the-water-absorbent

水による劣化の加速

- ・広く樹脂、繊維に共通な劣化因子として本質的に重要
- ・にもかかわらず、詳細は不明。分子機構の解明が必要

膨潤と脆化の分子機構

- 1. PLAの水による膨潤
- 2. 脆化の分子機構

PLA中の水の自由エネルギー解析

Widom equation and test particle insertion method

Widom equation in its original form for chemical potential of pure liquid

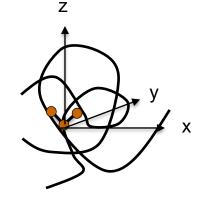
$$\mu^{\text{ex}} = \left(\frac{\partial F^{\text{ex}}}{\partial N}\right)_{V, T}$$

$$= F^{\text{ex}}(N+1, V, T) - F^{\text{ex}}(N, V, T)$$

$$= kT \ln \frac{VZ_N(V, T)}{Z_{N+1}(V, T)}$$

$$= -kT \ln \left\langle \exp\left\{-\beta v^{N+1}(\mathbf{r}^N)\right\}\right\rangle_N$$

Widom (1963)


N→∞ : rigorous

N=N : free energy of transfer from vacuum

Center of mass of the (N+1)th particle is fixed at (0,0,0).

Free energy of transfer of a solute with rotational degrees of freedom $\boldsymbol{\Omega}$ from vacuum to inside of the system of interest

$$\Delta G = -kT \ln \left\langle \exp \left\{ -\beta V(\mathbf{r}_0, \mathbf{\Omega}_0; \mathbf{R}^N) \right\} \right\rangle_{\mathbf{R}^N}$$

1. canonical importance sampling

$$\left\langle \exp\left\{-\beta V(\boldsymbol{r},\boldsymbol{\Omega};\boldsymbol{R}^N)\right\}\right\rangle_{\boldsymbol{r},\boldsymbol{\Omega};\boldsymbol{R}^N}$$

Adams (1974)

: random sampling (inefficient)

$$\left\langle \iint \mathbf{1} \cdot \exp\left\{-\beta V(r, \Omega; \mathbf{R}^N)\right\} dr d\Omega\right\rangle_{\mathbf{R}^N}$$
 : canonical ensemble

Efficient and rigorous sampling

2. Multi-particle simultaneous sampling

Interactions

$$\begin{split} V(\boldsymbol{R}^{N}, \boldsymbol{r}^{n}, \boldsymbol{\varOmega}^{n}) &= V_{N}(\boldsymbol{R}^{N}) + V_{n}(\boldsymbol{R}^{N}, \boldsymbol{r}^{n}, \boldsymbol{\varOmega}^{n}) \\ V_{N}(\boldsymbol{R}^{N}) &= \sum_{I>I}^{N} \sum_{J}^{N} V_{IJ}(\boldsymbol{R}_{I}, \boldsymbol{R}_{J}) \quad \text{: environment-environment interaction} \end{split}$$

$$V_n(\mathbf{R}^N, \mathbf{r}^n, \mathbf{\Omega}^n) = \sum_{i=1}^n \sum_{\alpha_i}^{m_i} \sum_{j=1}^N V_{\alpha_i J}(\mathbf{r}_{\alpha_i}, \mathbf{R}_J)$$
 : solute-environment interaction

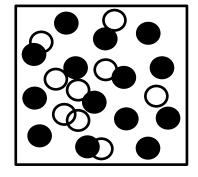
MD

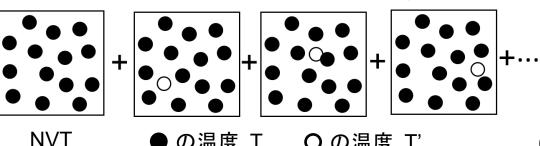
$$\ddot{\mathbf{R}}_{I} = \frac{\mathbf{F}_{I}}{M_{I}} \qquad \mathbf{F}_{I} = -\frac{dV_{N}(\mathbf{R}^{N})}{d\mathbf{R}_{I}}$$

$$\ddot{\mathbf{r}}_{\alpha_{i}} = \frac{\mathbf{F}_{\alpha_{i}}}{m_{\alpha_{i}}} \qquad \mathbf{F}_{\alpha_{i}} = -\frac{dV_{n}(\mathbf{R}^{N}, \mathbf{r}^{n}, \mathbf{\Omega}^{n})}{d\mathbf{r}_{\alpha_{i}}}$$

 r_{α} : atom α of solute molecule i

 R_{i} : environmental molecule I


n: number of solute molecules


 m_i : number of atoms of the solute molecule i

N: number of atoms of the environmental molecules

T: temperature of interest

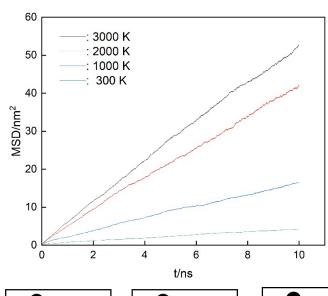
の温度 T O の温度 T'

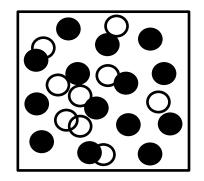
Efficient and rigorous sampling

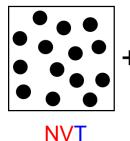
3. High temperature sampling: single-particle distribution

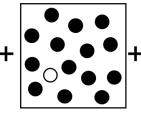
$$\rho(\mathbf{r}) \propto \left\langle \exp\left(-\frac{V(\mathbf{r}; \mathbf{R}^N, \mathbf{\Omega})}{k\mathbf{T}'}\right) \right\rangle_{\mathbf{R}^N, \mathbf{\Omega}}$$

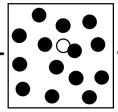
$$\Delta F(\mathbf{r}) = -k\mathbf{T'} \ln \frac{\rho(\mathbf{r})}{\rho(\mathbf{r}^0)} + \Delta F(\mathbf{r}^0)$$

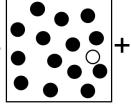

Free energy of transfer from vacuum to a particular position r^0

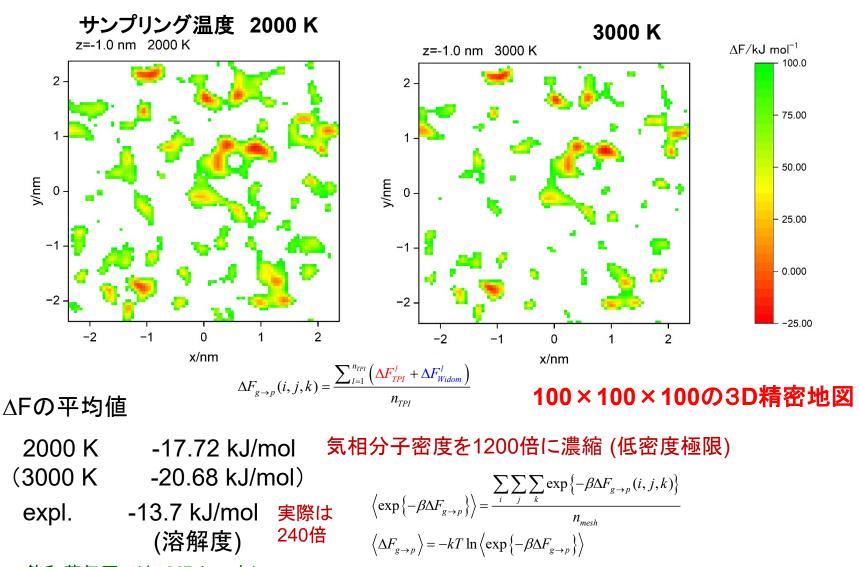

$$\Delta U(r) \approx \left\langle V(r; \mathbf{R}^N, \mathbf{\Omega}) \right\rangle_{\mathbf{R}^N, \mathbf{\Omega}}$$


$$\Delta S(\mathbf{r}) = \frac{-\Delta F(\mathbf{r}) + \Delta U(\mathbf{r})}{T}$$


T: temperature of interest


T': sampling temperature

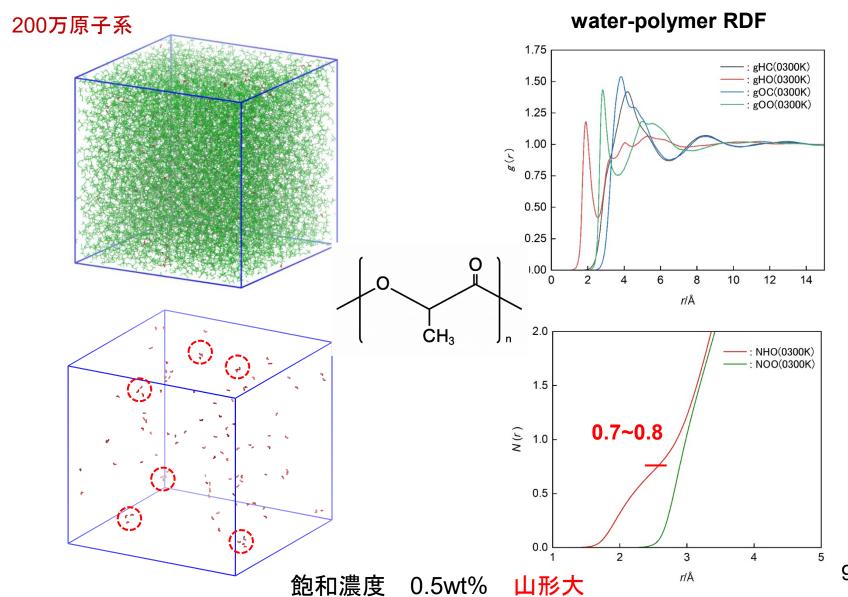




の平均温度 T

〇の平均温度 丁

3D map


300 KのPLA中の水の膨潤

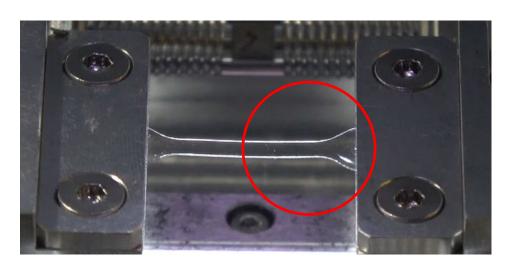
飽和蒸気圧では、MDセル中に 気相で0.09個、高分子相で22個

比較的高密度

PLAの膨潤

膨潤と脆化の分子機構

- 1. PLA中の膨潤
- 2. 脆化の分子機構

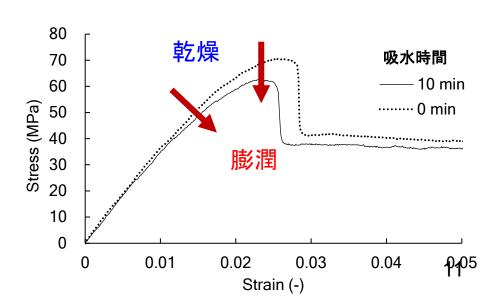

膨潤したPLAが示す力学的性質の変化と その分子機構

膨潤したPLAの短時間挙動

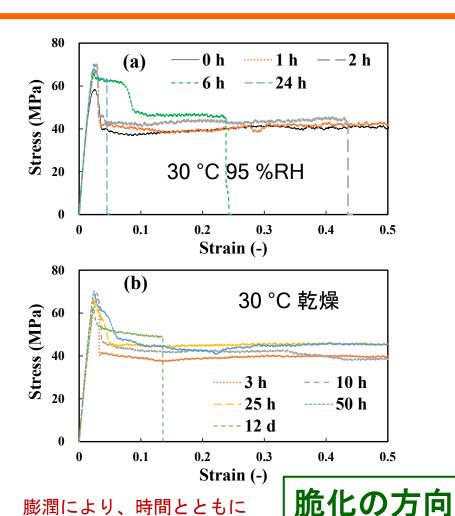
膨潤直後(10分後)

引張速度1 mm/min 画像16倍速

山形大 実験

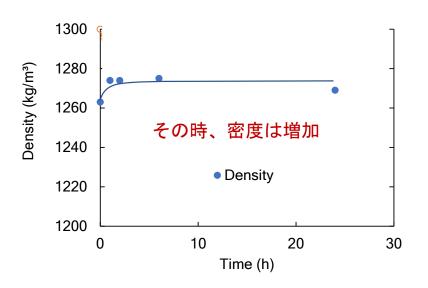


弾性率、降伏応力ともに低下


 $3970 \text{ MPa} \rightarrow 3550 \text{ MPa}$

70.7 MPa \rightarrow 62.6 MPa

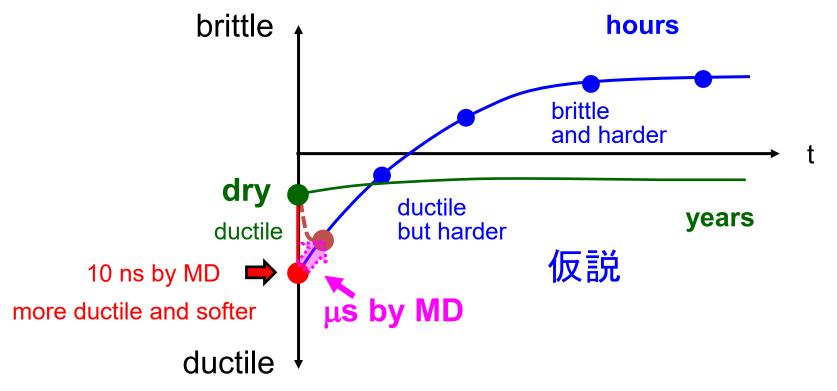
可塑化の方向


膨潤したPLAの長時間挙動

膨潤により、時間とともに

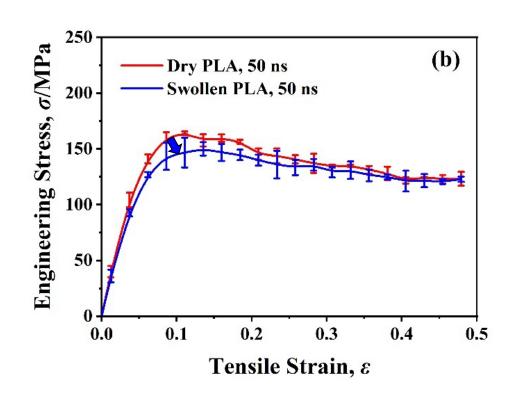
- 弾性率、降伏応力が増加
- ・延性から脆性に転移
- ・時間オーダーの変化
- ・水の含有率が低いほど、速度は遅い 乾燥状態だと週オーダーで脆化

山形大 小林先生、伊藤(浩)先生



Possible Origins of Embrittlement

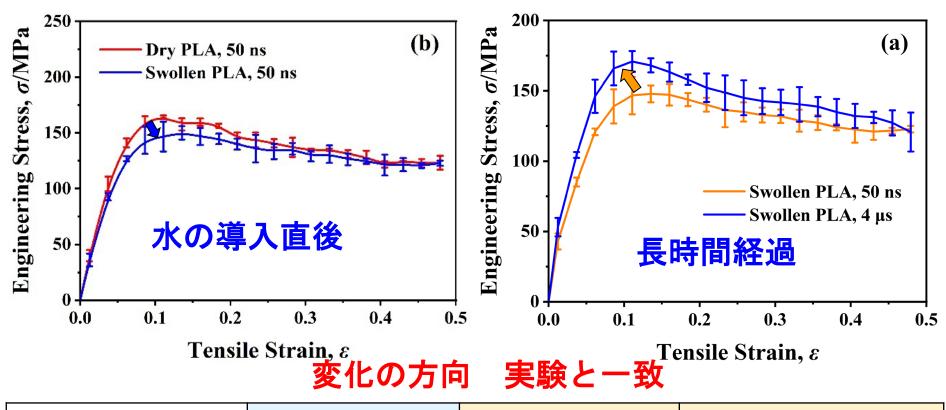
- × 1. Crystallization X線で観察されない
- × 2. Hydrolysis 1日だと百万本の結合に1本
- × 3. Disentanglement 考えにくい
- × 4. Hydrogen bonds 考えにくい
 - 5. Physical aging = densification
 - ・老化による脆化


短時間挙動と長時間挙動が逆の方向 矛盾なく説明できる分子機構はどのようなものか 12

- 延伸方向に沿った自由エネルギー障壁の低下 plasticizer, 溶媒、潤滑、…… 応答時間不要、水分子浸透の直後から機能
- 2. 安定構造に向けた、構造変化速度の加速高分子構造が変化するための応答時間が必要

MD計算

SS curve of swallen PLA

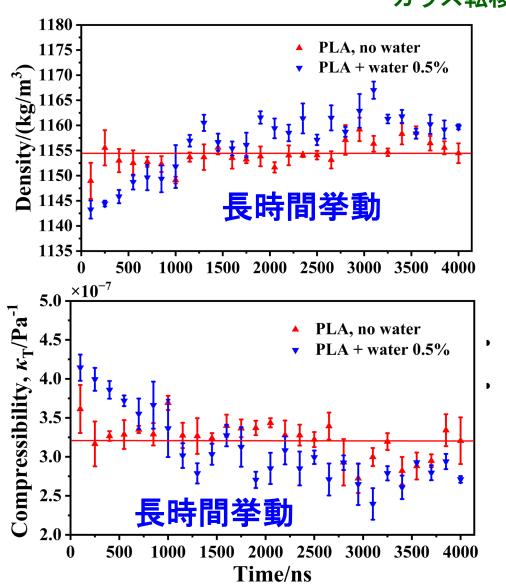

水の導入直後

変化の方向 弾性率が小さくなる 降伏応力が小さくなる

実験と一致

System	PLA, no water (320K)	Swollen PLA (50 ns, 320K)
Young's modulus (MPa)	2500	2200
Yield stress (MPa)	163	148
Yield strain	0.11	0.12

SS curve of swallen PLA



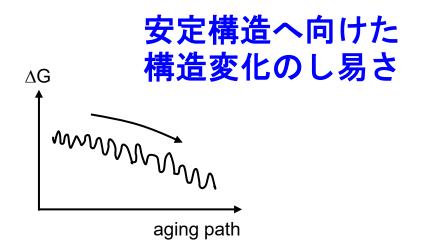
System	PLA, no water (320K)	Swollen PLA (50 ns, 320K)	Swollen PLA (4000 ns, 320K)
Young's modulus (MPa)	2500	2200	2500
Yield stress (MPa)	163	148	172
Yield strain	0.11	0.12	0.10

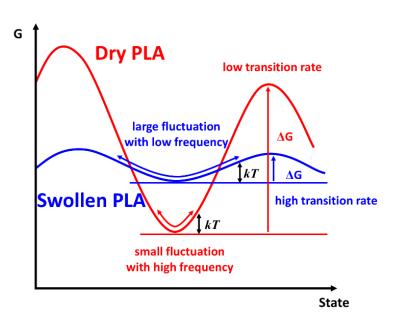
Long-time collective properties

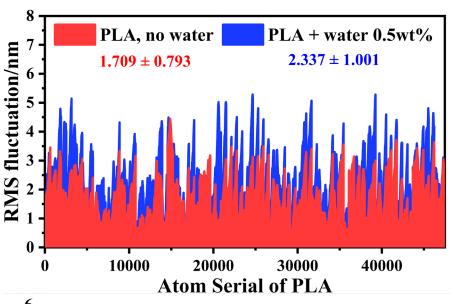
ガラス転移点直下の温度で計算、平衡化を加速

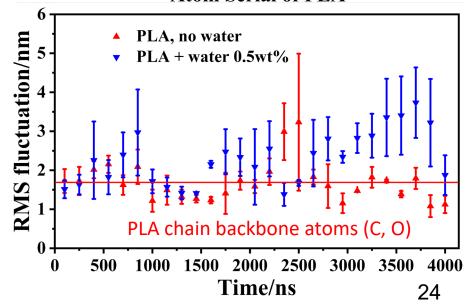
密度 → 増加

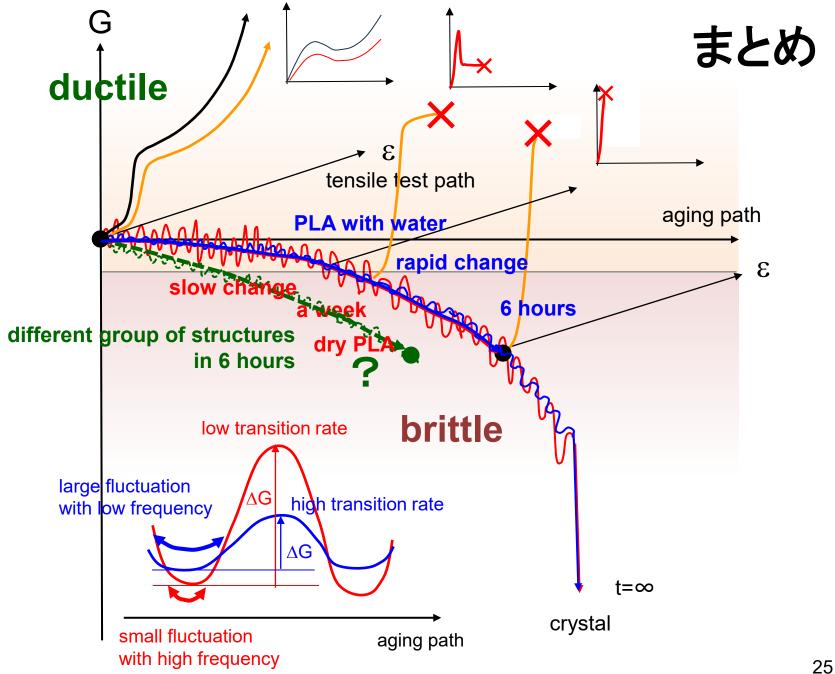
等温圧縮率 → 減少 硬くなる


実験と一致


- A quick shrink is observed in Swollen PLA;
- A clear decrease is observed in Isothermal compressibility, i.e., the deviation in volume, indicating the hardening behavior;


$$\kappa_{\mathrm{T}} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{\mathrm{T}} = \frac{\sigma_{V}}{kTV} = \frac{\langle V^{2} \rangle - \langle V \rangle^{2}}{kT \langle V \rangle_{22}}$$


Short-time single-particle properties (1)


RMSF of the atoms

Thank you!