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Adsorption of organic matter in water

Ship bottoms Artificial organs Membranes

Thrombus (I04%) .
Energy loss Flow reduction

Infection (B¢E)

Antifouling surfaces are desired.
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Antifouling of hydrophilic SAMs

Steric repulsion of bound
water molecules

R R J. Zheng et al., Biophys. J. 89, 158-166 (2005).

R=0OH R (R (R (R
J.I. Monroe et al., Proc. Natl. Acad. Sci. USA 118,
2020205118 (2021).
Self Assembled Water barrier mechanism
Monolayer (SAM)
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Almost no study for polymer brushes

Is it the only antifouling mechanism?
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Components of Gibbs energy
AG(z) = AGrep(2) + AGy(2) + AGc(2)

N
o

PCBMA (strong) -
PHEMA (weak) .

5

S

2 10|

>

2 0r

o

o

w -10 T

O

O

o -20

-4 -3 -2 -1 0
Z-2z,,/nm

AG(2) = AG™(2) + AG(2)

G for the hypothetical nonpolar solute
AG™P(z) = —TAS;v(2) + AE(2)

Total

London dispersion (energy)

1 Coulomb (energy)

in the PCBMA brush

Stabilization due to London dispersion is small
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Two roles of water in.the brush
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« Large effective volume due to bound
water molecules

« Also observed for SAMs
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Reduction of London dispersion interaction
« Not observed for SAMs
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Hydrophilic groups
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the number of surrounding atoms
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Dependence on grafting density

Propionamide (GIn)

Isobutane (Leu)
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Adsorbate molecules reach
the substrate easily
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Experimental studies

Better antifouling for more
hydrophilic polymers

C. Zhao et al., Langmuir 26, 17375-17382
(2010).

W. Zhao et al., J. Mater. Chem. B 2, 5352-
5357 (2014).

B.L. Leigh et al., Biomacromolecules 18,
2389-2401 (2017).

W. Dai et al., J. Mater. Chem. B 7, 2162-
2168 (2019).

High and low surface coverage regimes

60 ¢
PHEMA(weak)

Stronger antifouling of less
hydrophilic polymers

C. Zhao et al., Langmuir 27, 4906-4913
(2011).

E. van Andel, et al., Langmuir 35, 1181-
1191 (2019).

No contradiction between the

two types of experimental result



Coarse-grained simulations

All-atom (AA) Coarse-grained (CG)

« Small organic molecules « Proteins
« 16-mer « Long chains
« Graphene « Various substrates
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Kremer-Grest type model
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Hydrophilicity of the polymer
chain is changed by € in our
implicit solvent CG model
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Antifouling performance is better for
the less hydrophilic polymer brush

in @ range of grafti

ng density

12



Anomalous regime
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hydrophobic substrates

The anomalous behavior is found for
long chains
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Correspondence between CG and AA

Strongly hydrophilic

€ =10° kT €e=0.5kT

Do these two CG models well
represent real polymers?

Weakly hydrophilic
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Two equations for CG model

RS> = 0.491Ny>%0
(Rq in good solvent)

Rpyax = 0.97Npo
(maximum chain length)

"

Insert RE® and R,y calculated
from AA simulations with Ny = 98

"V

o and N, that reproduce the structure
of the AA polymer with Ny = 98

e

€ is determined by comparison of
R, in water calculated from CG
simulations with AA simulations
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Structures of the CG and AA simulations
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The CG models are structurally similar to the AA models.
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Conclusions
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Two roles of bound water
« Enhancement of steric repulsion

« Reduction of London dispersion
interactions

Better antifouling performance of the
less hydrophilic PHEMA brush

« T. Yagasaki and N. Matubayasi, Langmuir 39, 13158-13168 (2023).
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Better antifouling performance of less
hydrophilic brushes

+ Hydrophobic substrates

« Long chains

Correspondence between CG and AA
models
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« T. Yagasaki and N. Matubayasi, Langmuir 40, 15046-15058 (2024).
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