© 2023 Toshiba Energy Systems & Solutions Corporation

水・蒸気性質シンポジウム2023 令和5年11月29日

ガスタービン複合発電における硫酸露点

IAPWS, IRS作業グループ " ICRN for acid gas dew points "の検討

沖田 信雄 木村 賢一 東芝エネルギーシステムズ(株)パワーシステム事業部

TOSHIBA

東芝エネルギーシステムズ 2023

© 2023 Toshiba Energy Systems & Solutions Corporation

水・蒸気性質シンポジウム2023 令和5年11月29日

DSC-KTP-COM-0012

ガスタービン複合発電における硫酸露点

IAPWS, IRS作業グループ " ICRN for acid gas dew points "の検討

沖田 信雄 木村 賢一 東芝エネルギーシステムズ(株)パワーシステム事業部

TOSHIBA

東芝エネルギーシステムズ 2023

目次

- 1 硫酸露点の課題
- 2 排ガス露点予測法の検討方法
- 3 検討結果と次のステップ
- 4 GTCC用の硫酸露点新予測法の提案
- 5 今後の作業グループの予定(ご参考)
 - © 2023 Toshiba Energy Systems & Solutions Corporation 2

目次

- 1 硫酸露点の課題
- 2 排ガス露点予測法の検討方法
- 3 検討結果と次のステップ
- 4 GTCC用の硫酸露点新予測法の提案
- 5 今後の作業グループの予定(ご参考)

1. 硫酸露点の課題

1. 硫酸露点の課題 DSC-KTP-COM-0012 酸の凝縮による腐食と応力腐食割れSCC* * SCC : Stress Corrosion Cracking 予熱器 排気 燃料 ガス S分含む天然ガス すい 空気 伝熱管からの給水の漏れ ガスタービン 伝熱管 低温伝熱部 排熱回収ボイラHRSG (例) ・硫黄分を含む天然ガスの燃焼⇒ SO, SO₂ + ½ O₂ ⇔ SO₃ (排ガスが通るHRSG煙道において)
 SO₃ が排ガスの露点温度を上げる⇒ 凝縮 • SO₃ + H₂O= H₂SO₄ ⇒ 腐食 ・4NO₂ + 2H₂O + O₂ = 4HNO₃ ⇒ 応力腐食和割れ(SCC) 伝熱管壁のSCC SCC 発生 ⇒ 伝熱管からの給水の漏れ⇒ 腐食の拡大

© 2023 Toshiba Energy Systems & Solutions Corporation

3

1. 硫酸露点の課題

1. 硫酸露点の課題

DSC-KTP-COM-0012

既存の硫酸露点予測式は、極低硫黄分を含む排ガス において、結果が大きく異なる。 出典: ICRN 23, IAPWS

排ガス露点予測法の検討方法(3段階)

- 1. 現状の予測式と予測モデルの調査
- 2. "Aspen" モデルによる利点と現実的な適用範囲
- 3. 新予測法の提案

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

© 2023 Toshiba Energy Systems & Solutions Corporation 5

排ガス露点予測法の検討方法(3段階)

- 1. 現状の予測式と予測モデルの調査
- 2. "Aspen" モデルによる利点と現実的な適用範囲
- 3. 新予測法の提案

三段階の低硫黄排ガスの硫酸露点予測法検討

Condense © 2023 Toshiba Energy Systems & Solutions Corporation 6

From

LP

Pre HTR

三段階の低硫黄排ガスの硫酸露点予測法検討

- ◆第一段階:既存の文献調査
- ▶ 排ガスの硫酸露点予測法の調査
- ▶予測結果の比較
 - ✓ 極低硫黄において
 - ✓ 理論的な方法を含む
- ◆第二段階:理論モデルによる評価 ✓ 既存の方法との比較 ✓ シミュレーションモデルの利点と適用範囲

- ✓ 再循環流量とポンプ動力を最小化
- ✓ 酸腐食を防ぐ確実な方法
- ▶ 最終ゴールの推奨値に向けた技術ガイド(TGD) ✓ 低硫黄排ガスの硫酸露点予測法の改良 ✓ 安全で経済的な運転を考慮

DSC-KTP-COM-0012

10000

Recirculation Pump

調査・検討結果と次の段階

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」 © 2023 Toshiba Energy Systems & Solutions Corporation

調査・検討結果と次の段階

●第一段階の調査結果

- ▶ 既存の方法の調査
 - 既存の予測式の調査
 - 1960年代~1970年代の石炭や 重油焚きプラント向けの古いデータ (1-100ppm)でフィッティング
 - その他の方法の調査
 - ASHRAE (アメリカ暖房冷凍空 調学会)の線図は1965年の古い● 第三段階に向けた検討 ハンドブックをずっと使い続けている。

▶ 低硫黄排ガスに適用可能な二つの文献

- T. Landの表 (実験データから)
 - ✓ 0.08ppm 630ppm
- Muellerのカーブ (理論的解析)
 - ✓ Abelの理論・実験式とPerryの 化学ハンドブックから平衡計算

DSC-KTP-COM-0012

- 第二段階の検討結果
 - ▶ 理論モデルによる検討
 - シミュレーションモデルを使う方法
 - "ASPEN"
 - 分子シミュレーションを使う方法? - フィッティングデータが必要

- ▶ 成果と課題を白書の形にまとめる
 - 新しい作業グループによる
 - 実験データの検証
 - 理論的な背景、正当性
 - その他の課題
 - 来年の IAPWS年会でレビュー

"ASPEN": "Aspen Plus" V8 , V12, V14 - 2024 in USA

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

目標としたシミュレーション範囲

DSC-KTP-COM-0012

© 2023 Toshiba Energy Systems & Solutions Corporation 8

目標としたシミュレーション範囲

15% 200 160 Ohtsuka Eq. (published) Conventional(Coal/Oil) 10% $Td = 20 \log v$ 180 a =5% Extension of Ohtsuka Eq. (Lower SO3side) Extension of Ohtsuka Eq. /loisture int t(°C) Td (Higher SO3side) Dew point of purewater 160 (°C) Ohtsuka Eq. of 5%H2O 140 Ohtsuka Eq. of 10%H2O Defined (10⁻⁴ 10-2 120 10-3 ç SO₃ contents: v (%) + 100 出典: "火力原子力発電必携", 火力原子力発電技術協会 Dew Point GTCC(Gas/Oil) Published Area Acid Dew Points, 6% Conversio 140 80 130 H&B 120 HTR 60 -タ (0.08 vol ppm -P&M 有効なデ 110 - Neub 100 - - av2 40 - - - av3 ŝ 90 ADP 80 20 -ションと有効な 70 60 る ィング フィッテ 50 0 0.0001 0.001 1000 40 0.01 0.1 100 1000 10000 SO₃ Fraction vol ppm S-Content [mg/m³] 出典: "ICRN 23" of IAPWS HP http://www.iapws.org/icrn.html

DSC-KTP-COM-0012

実験的な文献からまとめた有効なデータ

The theory of acid deposition and its application to the dewpoint meter.

- by T. LAND (Land Pyrometers Ltd.), Journal of the Institute of Fuel, 1977
- 表1 硫酸露点(10%v水分における)

Table 1

	The figures shown are ppm H2SO4 volume														
°C	0	1	2	3	4	5	6	7	8	9					
100	0.08	0.09	0.11	0.13	0.15	0.17	0.20	0.23	0.27	0.31					
110	0.36	0.42	0.49	0.57	0.66	0.76	0.88	1.02	1.17	1.35					
120	1.6	1.8	2.1	2.4	2.7	3.1	3.6	4.1	4.7	5.4					
130	6.1	7.0	8.0	9.1	10.3	11.7	13.4	15.2	17.2	19.5					
140	22	25	28	32	36	41	46	53	59	67					
150	75	84	95	107	120	135	150	170	190	210					
160	235	265	295	330	370	410	460	510	570	630					

● 表2表1の硫酸露点を補正する係数(水分による補正)

Table 2

v% H2O	5	6	7	8	9	10	11	12	13	14	15
$\Delta t (^{\circ}C)$	-8	-6	-4.5	-3	-1.5	0	1	2.5	3.5	4	5

© 2023 Toshiba Energy Systems & Solutions Corporation 9

実験的な文献からまとめた有効なデータ

DSC-KTP-COM-0012

The theory of acid deposition and its application to the dewpoint meter.

- by T. LAND (Land Pyrometers Ltd.), Journal of the Institute of Fuel, 1977
- 表1 硫酸露点(10%v水分における)

Table 1

The figures shown are ppm H2SO4 volume

⊃°	0	1	2	3	4	5	6	7	8	9
100	0.08	0.09	0.11	0.13	0.15	0.17	0.20	0.23	0.27	0.31
110	0.36	0.42	0.49	0.57	0.66	0.76	0.88	1.02	1.17	1.35
120	1.6	1.8	2.1	2.4	2.7	3.1	3.6	4.1	4.7	5.4
130	6.1	7.0	8.0	9.1	10.3	11.7	13.4	15.2	17.2	19.5
140	22	25	28	32	36	41	46	53	59	67
150	75	84	95	107	120	135	150	170	190	210
160	235	265	295	330	370	410	460	510	570	630

● 表2表1の硫酸露点を補正する係数(水分による補正)

Table 2

v% H2O	5	6	7	8	9	10	11	12	13	14	15
Δt (°C)	-8	-6	-4.5	-3	-1.5	0	1	2.5	3.5	4	5

実験的な文献からまとめた有効なデータ

© 2023 Toshiba Energy Systems & Solutions Corporation 10

実験的な文献からまとめた有効なデータ

DSC-KTP-COM-0012

理論的な文献による有効なカーブ

▶ P. Muellerによる理論的な解析 (1957)

▶ 硫酸ガス分圧の温度依存の式(硫酸 濃度Ci が5%~ 85 wt%);

Log Pi = Ai + Bi/T + Di log T + Ei T ここで、各定数は、Abel's 関数の Table 1 (理論・実験データ, 1946)による

- 硫酸水溶液上の水蒸気分圧のデータは、 以下のハンドブックによる;
 - 1. Perry's Chemical Engineer's Handbook (3rd, 1950)
 - 2. Physikalish-chemische Tabllen, Ergänzungsband IIIc, z. B. S. 2523

DSC-KTP-COM-0012

TABLE 1 COEFFICIENTS OF VAPOR PRESSURE FORMULA ACCORDING TO ABEL

⊂i Wgt %	Ai	(-Bi±50)·10-3	Di	Ei · 103
5	+21.2	7.55	- 5.58	+ 6.7
10	+45.4	8.30	-14.60	+10.5
15	+59.5	8.64	-19.90	+13.3
20	+66.4	8.66	-22.70	+15.9
25	+40,1	7.85	-12.00	+ 7.7
30	+23.5	7.05	- 5.88	+ 5.6
35	+11.3	6,50	- 1.10	+ 2.5
40	- 3.8	5.84	+ 4.73	- 0,6
45	- 4.1	5.66	+ 5.03	- 1.8
50	- 4.7	5.56	+ 5.62	_ 4.2
55	+ 3.1	5.59	+ 2.71	- 3.0
60	+ 7.0	5.60	+ 1.76	- 4.5
65	- 5.0	5.00	+ 6.38	- 7.7
70	- 4.8	4.86	+ 6.73	- 9.9
75	+29.2	5.62	- 6.73	- 1.2
80	+47.1	5.98	-13.60	+ 2.4
85	+45.7	5.54	-13.65	+ 5.0
90	+ 4.8	4.19	+ 2.46	- 4.8
95	+14.6	4.44	- 1.25	- 2.8
08 3	+16.3	4.48	- 1 75	- 26

出典: "Contribution to the question of the effect of sulfuric avid on the dew point temperature of flue gases", P. Mueller, Feb. 1957

Muellerの方法は、硫酸水溶液上で硫酸蒸気の分圧と 水蒸気分圧を組み合わせている。

© 2023 Toshiba Energy Systems & Solutions Corporation 11

理論的な文献による有効なカーブ

P. Muellerによる理論的な解析 (1957)

▶ 硫酸ガス分圧の温度依存の式(硫酸 濃度Ci が5%~ 85 wt%);

Log Pi = Ai + Bi/T + Di log T + Ei T

- ここで、各定数は、Abel's 関数の Table 1 (理論・実験データ, 1946)による
- 硫酸水溶液上の水蒸気分圧のデータは、
 以下のハンドブックによる;
 - 1. Perry's Chemical Engineer's Handbook (3rd, 1950)
 - 2. Physikalish-chemische Tabllen, Ergänzungsband IIIc, z. B. S. 2523

DSC-KTP-COM-0012

COEFFIC	CIENTS	TABLE 1 OF VAPOR PRESS CORDING TO ABE	SURE FOI L	RMULA
ci Wgt %	Ai	(-Bi±50)·10-3	Di	Ei • 103
5	+21.2	7.55	- 5.58	+ 6.7
10	+45.4	8.30	-14,60	+10.5
15	+59.5	8.64	-19.90	+13.3
20	+66.4	8.66	-22.70	+15.9
25	+40,1	7.85	-12.00	+ 7.7
30	+23.5	7.05	- 5.88	+ 5.6
35	+11.3	6,50	- 1.10	+ 2.5
40	- 3.8	5.84	+ 4.73	- 0,6
45	- 4.1	5.66	+ 5.03	- 1.8
50	- 4.7	5.56	+ 5.62	_ 4.2
55	+ 3.1	5.59	+ 2.71	- 3.0
60	+ 7.0	5.60	+ 1.76	- 4.5
65	- 5.0	5.00	+ 6.38	- 7.7
70	- 4.8	4.86	+ 6.73	- 9.9
75	+29.2	5.62	- 6.73	- 1.2
80	+47.1	5.98	-13.60	+ 2.4
85	+45.7	5.54	-13.65	+ 5.0
90	+ 4.8	4.19	+ 2.46	- 4.8
95	+14.6	4.44	- 1.25	- 2.8
98.3	+16.3	4.48	- 1.75	- 2.6

出典: "Contribution to the question of the effect of sulfuric avid on the dew point temperature of flue gases", P. Mueller, Feb. 1957

Muellerの方法は、硫酸水溶液上で硫酸蒸気の分圧と 水蒸気分圧を組み合わせている。

出典.: "Contribution to the question of the effect of sulfuric avid on the dew point temperature of flue gases", P. Mueller, Feb. 1957

Muellerのカーブは分圧比 (P_{H2SO4}/ P_{H2O})の関数で表現されている。

© 2023 Toshiba Energy Systems & Solutions Corporation 12

DSC-KTP-COM-0012

理論的な文献による有効なカーブ

出典.: "Contribution to the question of the effect of sulfuric avid on the dew point temperature of flue gases", P. Mueller, Feb. 1957

Muellerのカーブは分圧比 (P_{H2so4}/ P_{H2o})の関数で表現されている。

理論的な文献による有効なカーブ

0.1 ppm以下におけるMuellerのカーブとT. Landの比較

Figure 22-1. Mueller's curve indicates acid dew point. (10% Moisture content)

出典.: "Chap. 22 Coil-end Deposition and Corrosion Control", Suez Water Technologies https://www.suezwatertechnologies.com/handbook/c hapter-22-coil-end-deposition-and-corrosion-control

Muellerのカーブは、実用的には 0.01ppm まで使える。

© 2023 Toshiba Energy Systems & Solutions Corporation 13

理論的な文献による有効なカーブ

DSC-KTP-COM-0012

0.1 ppm以下におけるMuellerのカーブとT. Landの比較

Figure 22-1. Mueller's curve indicates acid dew point. (10% Moisture content)

出典.: "Chap. 22 Coil-end Deposition and Corrosion Control", Suez Water Technologies https://www.suezwatertechnologies.com/handbook/c hapter-22-coil-end-deposition-and-corrosion-control

Muellerのカーブは、実用的には 0.01ppm まで使える。

DSC-KTP-COM-0012

◆ "Aspen Plus" v8.8による3つのモデル (example files)

✓ Model-1; Flue gas モデル (ファイル名; flue.g)

- ✓ Model-2; Sulfuric Acid モデル (ファイル名; sulfuricacid)
- ✓ Model-3; H2SO4 モデル (Aspen Plus H2SO4 Model)

▶ 各モデルの条件

- ✓ 電解質 NRTL 活量係数モデルが使われている
 - ELECNRTL; 非理想 電解質水溶液 と ヘンリー則
 - ENRTL-SR; 対称電解質NRTL と RK 状態方程式

	Model-1	Model-2	Model-3	
ベースモデル	ELECNRTL	ELENRTL	ENRTL-SR	
Henry comps.	FLUE-G	GLOBAL	N. A.	各モデルで 定義
Chemistry ID	FLUE-G	GLOBAL	H2SO4	各モデルで 定義

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」 © 2023 Toshiba Energy Systems & Solutions Corporation

"ASPEN"によるシミュレーション

DSC-KTP-COM-0012

14

- "Aspen Plus" v8.8による3つのモデル (example files)
 - ✓ Model-1; Flue gas モデル (ファイル名; flue.g)
 - ✓ Model-2; Sulfuric Acid モデル (ファイル名; sulfuricacid)
 - ✓ Model-3; H2SO4 モデル (Aspen Plus H2SO4 Model)

▶ 各モデルの条件

✓ 電解質 NRTL 活量係数モデルが使われている

- ELECNRTL; 非理想 電解質水溶液 と ヘンリー則
- ENRTL-SR: 対称電解質NRTL と RK 状態方程式

	Model-1	Model-2	Model-3	
ベースモデル	ELECNRTL	ELENRTL	ENRTL-SR	
Henry comps.	FLUE-G	GLOBAL	N. A.	各モデルで 定義
Chemistry ID	FLUE-G	GLOBAL	H2SO4	各モデルで 定義

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

◆ 計算条件

✓ H2O; 5% と 10% (体積比)

✓ SO3; 0.1 v.ppm ~ 5 v.ppm

unit; v%	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8
H2O	5	5	5	5	10	10	10	10
SO3	0.00001	0.00005	0.0001	0.0005	0.00001	0.00005	0.0001	0.0005
N2	74.17599	74.17596	74.17592	74.17561	70.27199	70.27196	70.27192	70.27161
02	19.9025	19.90249	19.90248	19.9024	18.855	18.85499	18.85498	18.8549
Ar	0.8835	0.8835	0.883499	0.883495	0.837	0.837	0.836999	0.836995
CO2	0.038	0.038	0.038	0.038	0.036	0.036	0.036	0.036
Total	100	100	100	100	100	100	100	100

▶ 結果の例 (Model-1)

✓ T. Land の表, 大塚の式と V&B の式との比較

		-						
H2O v%	5	5	5	5	10	10	10	10
SO3 vppm	0.1	0.5	1	5	0.1	0.5	1	5
"ASPEN" Model-1	68.4	72.7	74.7	79.6	76.8	81.1	83.1	87.8
T. Land	93.6	104.2	109.0	120.5	101.5	112.1	116.9	128.4
Otsuka	84.0	98.0	104.0	118.0	94.0	108.0	114.0	128.0
V & B	88.0	101.8	108.0	123.4	96.2	109.6	115.6	130.5

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」 © 2023 Toshiba Energy Systems & Solutions Corporation

"ASPEN"によるシミュレーション

◆ 計算条件

- ✓ H2O; 5% と 10% (体積比)
- ✓ SO3; 0.1 v.ppm ~ 5 v.ppm

unit; v%	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8
H2O	5	5	5	5	10	10	10	10
SO3	0.00001	0.00005	0.0001	0.0005	0.00001	0.00005	0.0001	0.0005
N2	74.17599	74.17596	74.17592	74.17561	70.27199	70.27196	70.27192	70.27161
02	19.9025	19.90249	19.90248	19.9024	18.855	18.85499	18.85498	18.8549
Ar	0.8835	0.8835	0.883499	0.883495	0.837	0.837	0.836999	0.836995
CO2	0.038	0.038	0.038	0.038	0.036	0.036	0.036	0.036
Total	100	100	100	100	100	100	100	100

▶ 結果の例 (Model-1)

✓ T. Land の表, 大塚の式と V&B の式との比較

H2O v%	5	5	5	5	10	10	10	10
SO3 vppm	0.1	0.5	1	5	0.1	0.5	1	5
"ASPEN" Model-1	68.4	72.7	74.7	79.6	76.8	81.1	83.1	87.8
T. Land	93.6	104.2	109.0	120.5	101.5	112.1	116.9	128.4
Otsuka	84.0	98.0	104.0	118.0	94.0	108.0	114.0	128.0
V & B	88.0	101.8	108.0	123.4	96.2	109.6	115.6	130.5

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」 © 2023 Toshiba Energy Systems & Solutions Corporation

DSC-KTP-COM-0012

15

15

DSC-KTP-COM-0012

◆現状のデータとの比較 (T. Land の表と Muellerのカーブとの比較)

Model-3 が、有効な文献と比較して最も近い

「""で記された商品の名称は、それぞれ各社が商標として使用して_{© 2023 Toshiba Energy Systems & Solutions Corporation}16 いる場合があります。」

"ASPEN"によるシミュレーション

DSC-KTP-COM-0012

◆現状のデータとの比較 (T. Land の表と Muellerのカーブとの比較)

「"で記された商品の名称は、それぞれ各社が商標として使用して_{© 2023 Toshiba Energy Systems & Solutions Corporation} いる場合があります。」

DSC-KTP-COM-0012

DSC-KTP-COM-0012

17

"ASPEN" model-3 は、Muellerのカーブに近い

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

"ASPEN"によるシミュレーション

「"で記された商品の名称は、それそれ各社か商標として使用して © 2023 Toshiba Energy Systems & Solutions Corporation 17 いる場合があります。」

極低SO3の硫酸露点の予測にモデルを使う利点

DSC-KTP-COM-0012

"ASPEN " モデルによる露点のシミュレーション 実機プラントのデータを使って比較

二つの予測式は露点を過小評価し、 "ASPEN" は正しく評価

「""で記された商品の名称は、それぞれ各社が商標として使用して_{© 2023 Toshiba Energy Systems & Solutions Corporation} 18 いる場合があります。」

極低SO3の硫酸露点の予測にモデルを使う利点

DSC-KTP-COM-0012

"ASPEN " モデルによる露点のシミュレーション 実機プラントのデータを使って比較

「""で記された商品の名称は、それぞれ各社が商標として使用して_{© 2023 Toshiba Energy Systems & Solutions Corporation 18 いる場合があります。」}

極低SO3の硫酸露点の予測にモデルを使う利点

DSC-KTP-COM-0012

「排ガス中の最低SO3濃度の推定」から求めた実用的な モデル化範囲

燃焼時反応:2H₂S+3O₂→2SO₂+2H₂O(10%O₂) 燃焼後の転換:2SO₂+O₂→2SO₃(5%転換率)

	H2S	SO2	SO3	Remarks
H2Sの測定限界か ら求めた場合	0.2ppmv	0.02ppmv	0.001ppmv =1ppbv	DP = 70°C @10% H2O
天然ガスの基準値 から求めた場合	≦ 4 ppmv	≦ 0.4 ppmv	≦ 0.02ppmv	DP = °C @10% H2O
実用的なモデル化 の目標下限(仮)	2 ppmv	0.2 ppmv	0.01 ppmv =10 ppbv	Min. SO3 assumption

極低SO3の硫酸露点モデルの下限は、仮に10ppvとする。 "ASPEN" モデルは、他の方法と比較するのに有効に機能。

「"で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

極低SO3の硫酸露点の予測にモデルを使う利点

DSC-KTP-COM-0012

「排ガス中の最低SO3濃度の推定」から求めた実用的な モデル化範囲

燃焼時反応:2H₂S+3O₂→2SO₂+2H₂O(10%O₂) 燃焼後の転換:2SO₂+O₂→2SO₃(5%転換率)

	H2S	SO2	SO3	Remarks
H2Sの測定限界か ら求めた場合	0.2ppmv	0.02ppmv	0.001ppmv =1ppbv	DP = 70°C @10% H2O
天然ガスの基準値 から求めた場合	≦ 4 ppmv	≦ 0.4 ppmv	≦ 0.02ppmv	DP = °C @10% H2O
実用的なモデル化 の目標下限(仮)	2 ppmv	0.2 ppmv	0.01 ppmv =10 ppbv	Min. SO3 assumption

極低SO3の硫酸露点モデルの下限は、仮に10ppvとする。 "ASPEN" モデルは、他の方法と比較するのに有効に機能。 3

検討結果と次のステップ

© 2023 Toshiba Energy Systems & Solutions Corporation 20

検討結果と次のステップ

3

これまでの結果

21

21

▶ "ASPEN" Model-3 (ELECTL-SR, H2SO4 model) は最適 ✓ T. Land の表や Muellerのカーブに最も近い ✓ "ASPEN" モデルと Muellerのカーブは殆ど一致 ● "ASPEN"の理論モデルはMuellerのカーブと同じと思われる。 ・次の検討 ✓ "ASPEN" モデルの背景とMueller の方法を比較する ✓ Muellerのカーブを最新のデータで改訂する • "ASPEN" モデルは、0.01ppm 以上のSO3排 次の目標 ガスの露点予測で活用する。 Muellerの理論的な フィッティングデータで改訂された 方法の確認 Muellerカーブは"ASPEN" モデルと比較する 最新のデータでの 必要がある。 フィッティング 0.01ppm SO3以上で改訂された 新しいMuellerカーブは、

> 「""で記された商品の名称は、それぞれ各社が商標として使用して © 2023 Toshiba Energy Systems & Solutions Corporation 21 いる場合があります。」

これまでの結果

DSC-KTP-COM-0012

- ◆ "ASPEN" Model-3 (ELECTL-SR, H2SO4 model) は最適
 - ✓ T. Land の表や Muellerのカーブに最も近い
 - ✓ "ASPEN" モデルと Muellerのカーブは殆ど一致

GTCCの設計者と設計に必要かつ有効である。

"ASPEN"の理論モデルはMuellerのカーブと同じと思われる。

・次の検討

- ✓ "ASPEN" モデルの背景とMueller の方法を比較する Muellerのカーブを最新のデータで改訂する
- "ASPEN" モデルは、0.01ppm 以上のSO3排 ガスの露点予測で活用する。
- フィッティングデータで改訂された Muellerカーブは"ASPEN" モデルと比較する 必要がある。

0.01ppm SO3以上で改訂された 新しいMuellerカーブは、 GTCCの設計者と設計に必要かつ有効である。

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

Muellerカーブは改訂できる

DSC-KTP-COM-0012

2018年のIAPWS年会で、大塚の式をフィッティングデータ を使って若干改善した ⇒ 同様の方法をMuellerの式に適用

水蒸気分圧の式と 硫酸ガス分圧の式 (Abelの式) を 使って、硫酸溶液 との相平衡で計算 ⇒エクセルで収束 計算

23

Muellerカーブは改訂できる

DSC-KTP-COM-0012

2018年のIAPWS年会で、大塚の式をフィッティングデータ を使って若干改善した ⇒ 同様の方法をMuellerの式に適用

水蒸気分圧の式と 硫酸ガス分圧の式 (Abelの式) を 使って、硫酸溶液 との相平衡で計算 ⇒エクセルで収束 計算

出典:: "Perry's Chemical Engineer's Handbook, 8th edition", R. H. Perry, 2008

Muellerのカーブは、最新のデータで改訂可能

© 2023 Toshiba Energy Systems & Solutions Corporation 24

Muellerカーブは改訂できる DSC-KTP-COM-0012 Perryの化学ハンドブックに分圧のデータがある。 下図は、第8版の化学ハンドブックの表からグラフ化した。 硫酸水溶液上の水蒸気分圧 硫酸水溶液上の硫酸ガス分圧 Water Partial Pressure, bar, over Aqueous Sulfuric Acid Solution Sulfuric Acid Partial Pressure, bar, over Aqueous Sulfuric Acid 1.40E+02 4.50E-01 4.00E-01 1.20E+02 3.50E-01 1.00E+02 3 00E-01 bara 8 00F+01 2 50E-01 2.00E-01 6.00E+01 1.50E-01 1.00E-01 2.00E+0 5.00E-02 0.00E+00 0.00E+00 40.0 120.0 20.0 60.0 80.0 100.0 50 100 200 -5.00E-02 Temperature (°C) - 30°C --10°C --20°C -- 60°C --70°C -- 160°C - 170°C -75%wt _ 94%wt — 250°C — _____97%wt _____98%wt _____98.5%wt _____99%wt _____99.5\$wt _____100%w

出典.: "Perry's Chemical Engineer's Handbook, 8th edition", R. H. Perry, 2008

Muellerのカーブは、最新のデータで改訂可能

© 2023 Toshiba Energy Systems & Solutions Corporation 24

GTCC用の硫酸露点新予測法の提案

GTCC用の硫酸露点新予測法の提案

新カーブにより、Muellerのカーブが復元・改訂できる

26

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

Muellerカーブは改訂できそう

新カーブにより、Muellerのカーブが復元・改訂できる

「""で記された商品の名称は、それぞれ各社が商標として使用して いる場合があります。」

新しい提案(新硫酸露点予測法)

DSC-KTP-COM-0012

改訂したカーブから、表 (左) か水露点からの偏差式 (右)で表現

© 2023 Toshiba Energy Systems & Solutions Corporation 27

新しい提案(新硫酸露点予測法) DSC-KTP-COM-0012 @10%H2O New estimation of sulfuric acid dewpoints and others 160 140 120 acid 100 80 0.000001 0.00001 0.0001 0.001 0.01 0.1 10 100 SO3 contents (ppmy) -New (this time) 200 °C 180 Table 1 0.005 4 160 0,05, 0,10 The figures shown are ppm H2SO4 volume K °C 0.0 0.09 0.11 0.2 0.3 0.13 0.15 0.1 0.2 0.2 0.36 0.42 0.49 0.57 0.66 0.76 0.88 1.02 1.17 11 1.35 1 8 21 24 2 3.1 3.6 4.1 47 5.4 12 16 13 6 1 70 80 91 10.3 117 134 15 17 2 195 22 28 32 41 46 6 14 2 3 5 5 0.1 Atr 8 9! 107 13 150 170 190 210 12 26 295 330 370 410 460 510 63 0,00 Du, 50, 12. Table 2 Figure 3 Increase At, due to Sulfuric Acid Vapor, above the Vapor Dew Point, Comparison with Available Measurements v% H2O 10 12 13 14 15 A + (°C 出典: Journal of the Institute of Fuel, T. LAND 出典.: "Contribution to the question of the effect of sulfuric avid (Land Pyrometers Ltd.),1977 on the dew point temperature of flue gases", P. Mueller, Feb. 1957

改訂したカーブから、表 (左) か水露点からの偏差式 (右)で表現

今後の作業グループの予定

© 2023 Toshiba Energy Systems & Solutions Corporation 28

5. 今後の作業グループの予定

次回IAPWS年会(2024年6月, USA)までの概略の予定

- ✓ "ASPEN" モデルのマニュアル, Muellerの文献等の共有
 ▶ 2023年9月末:済
- ✓ 上記マニュアル、文献の理解と精査
 - ▶ 検討中
- ✓ 最新データに基づき、Muellerカーブの改訂
 - ▶ 式の形と誤差について検討中
- ✓ GTCCの停止方法への反映 ⇒ メンバーと協議中
- ✓ 技術ガイドの項目 (Draft) ⇒ 年内にメンバーと協議
- ✓ 新硫酸露点予測法とGTCC運転に関する白書 (draft)
 ▶ 2024年5月末まで

白書のドラフトは来年のIAPWS年会で提示する。

「""で記された商品の名称は、それぞれ各社が商標として使用して_{© 2023 Toshiba Energy Systems & Solutions Corporation 29} いる場合があります。」

5. 今後の作業グループの予定

DSC-KTP-COM-0012

次回IAPWS年会(2024年6月, USA)までの概略の予定

- ✓ "ASPEN" モデルのマニュアル, Muellerの文献等の共有
 ▶ 2023年9月末:済
- ✓ 上記マニュアル、文献の理解と精査
 ▶ 検討中
- ✓ 最新データに基づき、Muellerカーブの改訂
 ▶ 式の形と誤差について検討中
- ✓ GTCCの停止方法への反映 ⇒ メンバーと協議中
- ✓ 技術ガイドの項目 (Draft) ⇒ 年内にメンバーと協議
- ✓ 新硫酸露点予測法とGTCC運転に関する白書 (draft)
 ▶ 2024年5月末まで

白書のドラフトは来年のIAPWS年会で提示する。

「""で記された商品の名称は、それぞれ各社が商標として使用して_{© 2023 Toshiba Energy Systems & Solutions Corporation 29} いる場合があります。」

